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Abstract. The calibration of hydrological models through the use of automatic algorithms aims at identifying parameter sets
that minimize the deviation of simulations from observations (often streamflows). It is a widespread technique that has been
the subject of much research in the past. Indeed, the choice of objective function (i.e. the criterion or combination of criteria
to optimize) can significantly impact the parameter set values identified as optimal by the algorithm. Besides, the actual goal
of the model application (flood or low-flow estimation, for instance) influences the way calibration is undertaken. This article
discusses how mathematical transformations, which are sometimes applied to the target variable before calculating the objec-
tive function, impact model simulations. Such transformations, for example square root or logarithmic, aim at increasing the
weight of errors made in specific ranges of the hydrograph. Typically, a logarithmic transformation tends to increase the fit
of streamflows to lower values, compared to no transformation. We show in a catchment set that the impact of these transfor-
mations on the obtained time series can sometimes be different from what could be expected. Extreme transformations, such
as squared or inverse of squared transformations, lead to models that are specialized for extreme streamflows, but show poor
performance outside the range of the targeted streamflows and are less robust. Other transformations, such as the power 0.2,
the Box—Cox and the logarithmic transformations, can be qualified as more generalist, and show a good performance for the

intermediate range of streamflows, along with an acceptable performance for extreme streamflows.

1 Introduction

Hydrological models are essential tools for hypothesis testing and process understanding (Rosbjerg and Madsen, 2006), but
also for very practical applications such as flood or low-flow forecasting, water resources management or the assessment of
climate change impact. Despite the long-lasting efforts of hydrologists, so far no consensus has emerged for identifying a
unique hydrological model fitting all purposes and it is doubtful whether it will ever be found. Consequently, in order to
fit specific applications such as those mentioned above, and due to the wide catchment diversity and the various targeted
streamflow ranges, performing a calibration of model parameters is generally necessary. The calibration process usually relies

on the use of a criterion (sometimes a combination of criteria), i.e. a numerical metric of the model error, which is used as
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an objective function. The choice of this optimization criterion is subjective, since it depends on various aspects (application
objective, model characteristics, etc.), and two different chosen criteria will impact differently on the calibration process and
will lead to different optimal parameter sets and performances (Booij and Krol, 2010). In addition, these criteria suffer from
flaws leading to their incorrect use by modellers (Clark et al., 2021), and each modeller has their own vision of what is a good
model or hydrograph and how it translates into a numerical criterion (Crochemore et al., 2015).

While criteria are usually calculated for comparing raw simulated and observed streamflow time series, a wide panel of
transformations have been introduced in the literature (Bennett et al., 2013). These transformations consist in using a mathe-
matical function in order to transform both simulated and observed time series. These transformations rely on the fact that they
distort the observed and simulated time series and their properties in such a way as to expect that the related errors are similarly
distorted. This is illustrated in Fig. 1, where in panel a, the larger errors between the observed and simulated time series mostly
occur for high-flow periods (pink shaded area), while in panel b, with log-transformed flows, these errors are much larger over
low-flow periods (green shaded areas).

More specifically, since many metrics are squared metrics (e.g. root mean square error or Nash—Sutcliffe efficiency, Nash
and Sutcliffe, 1970) and therefore are known to emphasize the most important errors (Sorooshian and Dracup, 1980), a large
set of transformations were proposed for better representation of low flows. The most common transformations found in the
literature are the square root transformation (Oudin et al., 2006; Pushpalatha et al., 2012; Garcia et al., 2017; Song et al., 2019),
the logarithmic transformation (Smakhtin et al., 1998; Houghton-Carr, 1999; Krause et al., 2005; Oudin et al., 2006; de Vos
et al., 2010; Seeger and Weiler, 2014; Pechlivanidis et al., 2014; Beck et al., 2016; Farmer and Vogel, 2016; Garcia et al., 2017,
Quesada-Montano et al., 2018; Santos et al., 2018; Song et al., 2019), the reciprocal of squared root (Chapman, 1964; Ding,
1966; Ishihara and Takagi, 1970), the inverse (Pushpalatha et al., 2012; Garcia et al., 2017) or other power—law transformations
(Dawdy and W., 1968; Chiew et al., 1993). Some other works used the Box—Cox transformation (Box and Cox, 1964; Abdulla
etal., 1999; Hogue et al., 2000; Duan et al., 2007; Vazquez et al., 2008). Nicolle et al. (2014) focused on low-flow simulations
and the different models they used were calibrated using several of the transformations listed above.

While the choice of transformations is wide and the theoretical basis is sound (as shown in Fig. 1), there is not an extensive
literature discussing the merits of the transformation approach. Nevertheless, some authors tried to investigate this issue. For
instance, Pushpalatha et al. (2012), in a review of the suitability of criteria for the evaluation of low flows, justify the use
of transformations by several authors through the fact that "the sum of squared residuals calculated on the logarithms of
flow values" reduces "the biasing towards peak flows". They investigated which range of streamflows leads to the largest
part of errors. Pefia-Arancibia et al. (2015) showed that a squared root transformation with the Nash—Sutcliffe efficiency
leads to a better calibration and a reduced parameter uncertainty than no transformation or a logarithmic transformation.
Sadegh et al. (2018) investigated the role of several transformations in three catchments and two models and deduced that
data transformations might be more helpful for evaluation and analysis of model behaviour than model inference. Smith et al.
(2014) showed that a transformation called "flow-corrected time", designed to provide greater weight to time periods with
larger hydrologic flux, results in improved fits, compared to a baseline untransformed case and the logarithmic transformation,

over the time periods that dominate hydrologic flux.
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Figure 1. Panel a: Observed and simulated streamflow time series (left axis) for the Fecht River at Wintzenheim and the related difference
(i.e. error, right axis). Panel b: The same observed and simulated streamflow time series plotted with a logarithmic scale and the difference in
log-transformed observed and simulated streamflows. In the boxes, a low-flow period is highlighted in green, which shows that the error is
minimal with no transformation (panel a) and much higher with a logarithmic transformation (panel b). The opposite is valid for high flows

(in pink).

Still, most of the time, the use and choice of transformation are not thoroughly assessed. For example, Krause et al. (2005)
state that they used the logarithmic transformation on the Nash—Sutcliffe efficiency "to reduce the problem of the squared
differences [...]. Through the logarithmic transformation of the runoff values the peaks are flattened and the low flows are kept
more or less at the same level. As a result the influence of the low flow values is increased in comparison to the flood peaks".
Chiew et al. (1993) use a power 0.2 transformation and justify it by the fact that "it generally leads to constant variances (values
of SIM®2 — REC®2 are similar for all flow volumes) in many of the temperate catchments where models have been applied

by the authors". Oudin et al. (2006) report that "it is common practice in hydrology to use a transformation on flows before
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optimization". Others only state that transformations are used "to remove the bias towards high flows" (Smakhtin et al., 1998),
"to fit low flow periods" (Pechlivanidis et al., 2014) or to put "more weight on low flow" (Garcia et al., 2017).

While Fig. 1 tends to illustrate these assertions, we feel that there is a lack of a general assessment of the impact of trans-
formations on the calculation of criteria over diverse conditions. Consequently, in this article we aim to perform a systematic
evaluation of the impact of transformations on a large set of catchments when calibrating hydrological models. We will not
consider here metrics calculated with streamflow alteration such as keeping only streamflow values under or over a threshold

or the use of relative streamflow.

2 Material
2.1 Catchment dataset

Data from 325 catchments around France (Chauveau et al., 2011) were used in order to i) generalize the conclusions drawn
from this study (Gupta et al., 2014) and ii) possibly identify links between catchment characteristics and specific behaviours of
transformations. These catchments were chosen for the low human impact on the precipitation—streamflow relationship and for
the low rate of missing streamflow data (< 0.5 %) over the period of interest. Moreover, the catchments are spread throughout
France (Figure 2), thus representing a wide variety of meteorological and hydrological conditions.

Precipitation and temperature data were retrieved from the Météo-France SAFRAN reanalysis (Vidal et al., 2010). Stream-
flow data were retrieved from the French HydroPortail database (https://hydro.eaufrance.fr/) (Leleu et al., 2014). Both mete-
orological and hydrological data were used at the daily time step. Records from 1985 to 2005 were used, with 1985-1995 as
the calibration period and 1995-2005 as the independent evaluation period. The main characteristics of the 325 catchments are
summarized in Table 1. It illustrates the high diversity of catchment characteristics encountered, with small to large catchments,
various precipitation and temperature conditions, rainfed as well as snowfed catchments, and catchments facing low to high
baseflow components. Moreover, the large range of land cover, slope and hydraulic length strengthens the diversity of possible
catchment response. This table also shows that the climatic conditions are similar between the two periods, with the evaluation

period being only slightly warmer and wetter than the calibration period.
2.2 Hydrological modelling

The GR4J model is a lumped conceptual daily rainfall-runoff model (Perrin et al., 2003). In this model, the effective pre-
cipitation is derived from the reduction in total precipitation by vegetation interception and by evapotranspiration from a soil
moisture accounting production store. The effective precipitation is then routed through two unit hydrographs and one routing
store. Groundwater exchange can occur from or to neighbouring catchments. A complete description of the model’s equations
is provided by Perrin et al. (2003).
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Figure 2. Map of the location of the 325 catchments used. The Fecht River at Wintzenheim, which is used as an example throughout this

paper, is coloured in blue.

95 This model contains four free parameters to calibrate against streamflow observations: the maximal capacity of the produc-
tion store (X1, in mm), the groundwater potential exchange (X2, in mm d 1), the 1-day ahead routing store capacity (X3, in
mm) and the time characteristics of the unit hydrographs (X4, in d).

For the catchments with a proportion of solid precipitation greater than 10 % of the total precipitation, a snow model,
CemaNlNeige, was used. This model is based on a degree—day approach and comprises two parameters to calibrate: the melt

100  rate coefficient (K ¢, in mm °C~! d~!) and a parameter regulating the energy of the snowpack (cr, dimensionless). In order to
take into account the catchment heterogeneity, CemaNeige was applied to five elevation bands of equal area, which makes it

possible to account for temperature and precipitation gradients (see Valéry et al., 2014, for more details).
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Characteristic Period Minimum Median Maximum

Surface area [km?] - 53 2255 134835

Min. altitude [m a.s.1.] - 6.0 209.0 2154.0

Median altitude [m a.s.1.] - 53.0 368.0 2741.0

Max. altitude [m a.s.1.] - 93.0 784.0 3997.0
Median slope [deg] - 1.1 7.4 35.8
Median hydraulic length [km] - 2.1 19.0 200.7
Artificial land cover [%] - 0.0 2.1 18.2
Agricultural land cover [%] - 0.0 54.2 97.7
Forest land cover [%] - 0.0 43.5 100.0
Mean annual precipitation [mm y’l] Calibration 651 1009 2204
Evaluation 691 1025 2077
Fraction of solid precipitation [%] Calibration 0.3 25 59.1
Evaluation 0.0 22 50.3
Mean air temperature [°C] Calibration -1.1 10.0 13.9
Evaluation -0.9 10.3 14.2
Mean annual potential evapotranspiration [mmy~']  Calibration 252 661 858
Evaluation 267 678 871
Mean annual streamflow [mm y’l] Calibration 101 405 2485
Evaluation 123 410 2250
Baseflow index [—] Calibration 0.005 0.215 0.679
Evaluation 0.005 0.227 0.759

Table 1. Statistics of the characteristics of the 325 catchments. The minimum, median and maximum columns represent the lowest, 163"
and highest value over the 325 catchments for every characteristic. The baseflow index values range between 0 and 1, with 1 the highest
value (highest baseflow). The baseflow index was calculated according to Pelletier and Andréassian (2020) with the baseflow R package
(Pelletier et al., 2021). Physiographic data were calculated using the SRTM DEM (Farr et al., 2007) and the Corine Land Cover data
(Copernicus, 2012). The calibration and evaluation periods are 1985-1995 and 1995-2005, respectively.

While GR4]J is the main model used in this work, in order to assess the transferability of the conclusions drawn, the GR6J
(Pushpalatha et al., 2011) model is also used. GR6J adds two parameters to GR4J, X5 [-], which enables an inversion of the
direction of the groundwater exchange throughout the year, and X6 [mm], which is the maximum capacity of an additional
exponential store, whose purpose is to improve low-flow simulations.

All the calculations are made with the airGR R package (Coron et al., 2017, 2022). The built-in optimization algorithm, an
initial parameter grid screening followed by a steepest gradient approach, is chosen due to its satisfactory performance with

the GR models. All optimization criteria and streamflow transformations used in this work are embedded in airGR.
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2.3 Optimization criteria

In order to assess the impact of transformations, the hydrological models are calibrated with several objective functions over
the 1985-1995 period. However, in order to estimate how transformations impact the simulated time series, the 1995-2005
independent evaluation period is also used.

Three optimization criteria are chosen for their wide use in calibrating hydrological models: the well-known Nash—Sutcliffe
efficiency (NSE, see Nash and Sutcliffe, 1970), the Kling—Gupta efficiency (KGE, see Gupta et al., 2009) and the modified
Kling—Gupta efficiency (KGE’, see Kling et al., 2012). The NSE concentrates most of the analyses of this work and the KGE
and KGE’ optimization criteria are used to assess the generality of the results. These three criteria are detailed in equations 1,
2 and 3.

i (@1 - Q1)

Frse=1e (1)
wr E?;(QO— 2)?
— Q° 54(Q*%)
Preor =1 \/(7‘—1)24-(@0—1)24_(8[1(@0) -1 2)
_ @ Cv(QS)
EKGE/_I_\/(T_1)2+(@)_1)2+(C,‘/(C2o)—1)2 (3)

with IV the total number of days of the test period, Q)7 and @)Y the simulated and observed streamflows, respectively, at time
step t, Q° (resp. Q%) the average observed (resp. simulated) streamflow over the period, r the correlation coefficient, s4 the

standard deviation and C' the coefficient of variation.
2.4 Transformations

The hydrological models are calibrated with the three above-mentioned criteria and different transformations of streamflows.
Nine to 11 transformations are used (Table 2) for each criterion. In addition to the transformations mentioned in the Introduc-
tion, four additional transformations are used. The squared (Q?) transformation is applied, as this can be used for focusing on
floods (Tan et al., 2005), and its inverse (Q~2) is applied as this focuses on low flows. Furthermore, two composite criteria,
f(Q)Jrg(QA) and f(Q)+f2(log(Q)) (with f standing for NSE, KGE or KGE’; Nicolle et al., 2014), are added since they can be

used as a compromise between criteria focusing on too—specific ranges of streamflows. The two transformations containing
the use of logarithm are not applied to KGE and KGE’, as they cause numerical instabilities and unit-dependence, as shown
by Santos et al. (2018). Regarding the Box—Cox transformation, equation 10 by Santos et al. (2018) is used to avoid the same

issues as for the logarithmic transformation.
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Table 2. The 11 transformations used in this study and the criteria they are applied to. The abbreviations provided here are used in the figures

and text.
Transformation ~ Abbreviation NSE KGE KGFE’
Q? 2 v v v
- 1 v v v
Vo 0.5 v v v
Q%2 0.2 v v v
Box-Cox boxcox v v v
f(Q)+f2(log(Q)) QlogQ v
f(Q)+£(Q’1) QinvQ v v v
log(Q) log v
1/v/@Q —0.5 v v v
-1 -1 v v v
-2 -2 v v v
3 Methods

In order to evaluate the impact of the transformations on model calibration, several analyses are made. They all rely on a
common analysis framework, which aims at analysing the behaviour of transformations at every simulation time step. The
general methodology, which is applied for each catchment and for each objective function, is detailed below and in Fig. 3 (for

illustrative purposes for only two transformations):

1. the hydrological model is calibrated against observed streamflows for a catchment and with a given objective function,

successively with different transformations (Fig. 3a),

2. for each time step, the absolute error |Qf — Q¢ is calculated for the simulations obtained with the nine (or 11) transfor-

mations (Fig. 3b),

3. these daily absolute errors are ranked from the smallest to the largest among the nine (for KGE or KGE’) or 11 (for NSE)

simulations (Fig. 3c),
4. the time series of daily ranks are sorted according to the sorted observed streamflow time series (Fig. 3d),

5. the sorted ranks are aggregated over 200 sequential intervals of an equal number of time steps to smooth the results and
facilitate the visual analysis. Three aggregations were made:
— calculation of the frequency of occurrence of all ranks (Fig. 3e),
— extraction of the transformation with the most 'number 1’ ranks (Fig. 3f),

— calculation of the average rank for each class (Fig. 3g),
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Figure 3. General methodology applied to assess the impact of transformations on the diverse ranges of streamflows. Here the example
is shown over a short period and for only two transformations and a single catchment. In the study, the methodology is applied for nine
to 11 transformations, 10-year periods and 200 intervals. a) Observed and simulated streamflow time series; b) Absolute values of errors
in transformed streamflow time series; ¢) Ranking of error time series; d) Sorting of ranked time series according to increasing observed
streamflows; For the next subplots, results are aggregated over intervals: e) Calculation of the frequency of occurrence for each rank; f)
Identification of the transformation with most number 1 ranks for each interval; g) Calculation of average rank for each transformation and

each interval. See the Methods section for more details.
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The use of ranks to classify the proximity between model simulations and streamflow observations could be criticized, since
it gives the same importance to large and small errors. However, ranks were found to be a good way of working on various
flow ranges, where the magnitude of errors can be very different.

The methodology above is applied catchment by catchment. Then, to aggregate results over the 325 catchments, we either

identify the transformation with the most number 1 ranks or average the ranks over the 325 catchments.

4 Results

When modellers choose an objective function (or, if relevant, a transformation), the main objective is to have a model fit for
purpose, e.g. to be the best for low flows if the target is low flows. Here we evaluate the link between the objective function
and transformation selected, and the accuracy of the model using the 200 flow intervals described above. We first perform this

analysis on a single catchment, before applying it to 325 catchments.
4.1 Analysis of the impact of transformations for a specific catchment

Figure 4 illustrates an example of the application of the methodology to a single catchment, the Fecht at Wintzenheim, for the
GR4J model calibrated with the NSE objective function and for 11 different transformations. Here we show which transfor-
mation leads to the most number 1 ranks for each of the 200 intervals, for low flows (on the left) to high flows (on the right).
It appears that some transformations are often ranked first (such as the —2, —1, 1 and 2 transformations). Conversely, some
transformations rarely or never ranked first (such as Qlog@ or 0.2). In this figure, the transformations are represented in an
order from a presupposed good representation of high flows (top row) to a presupposed representation of low flows (bottom
row), because except for composite transformations, those are presented in an order of decreasing power. We can see that the
logic is respected quite well, with transformations 2 and 1 being very well represented regarding intervals corresponding to
high flows, and transformations —2 and —1 being very well represented regarding intervals corresponding to low flows. This
does not preclude some transformations from being identified as the best one (or equally the best one, as ties are represented

in Fig. 4) for unexpected intervals, such as transformation 2 that shows good results for some low-flow categories.
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Figure 4. Identification of the simulation with the most number 1 ranks for 200 intervals ordered by increasing observed streamflows.
Example for the Fecht River at Wintzenheim, over the calibration period (1985-1995), for the GR4J model calibrated with NSE. Each

rectangle identifies for one interval which transformation(s) provides the most number 1 ranks, including ties.
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Figure 4 only gives an incomplete overview of the behaviour of each transformation. Indeed, it is possible that some trans-
formations behave reasonably well, while not being the closest to observations. Although having the best simulation for a given
range of streamflows is interesting, having at one’s disposal a simulation that behaves reasonably well for a rather wide range
of streamflows can also be interesting. Figure 5 provides elements for assessing the general performance of transformations,
by showing the frequency of occurrence of the different transformations for all the possible ranks and for each interval. In this
figure we can identify two different types of transformations: those which are either among the best ones or among the worst
ones, depending on the range of streamflows (e.g. 2, 1, —1 or —2), and those which are generally neither the best ones nor the
worst ones (e.g. 0.2, boxcox, QlogQ), etc.). However, it remains somewhat difficult to objectively qualify the performance of

the 11 transformations.
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Figure 5. Frequency of appearance of each transformation for each rank (from 1 [first] to 11 [last]) for 200 intervals ordered by increasing
observed streamflows. The frequency of appearance is calculated among all time steps for each interval (see Fig. 3e). Example for the Fecht

River at Wintzenheim, over the calibration period (1985-1995), for the GR4J model calibrated with NSE.

A third representation is given in Fig. 6 with the average rank of transformations for each of the 200 intervals. In this figure,
we see that the transformations remain rather close together for low flows, with an average rank between 5 and 7. By contrast,
the spread is larger for high streamflows with average ranks between 4 and 9. Specifically, several transformations share the
best average rank values for low flows, such as the —1, log and —0.5 transformations. Interestingly, the —2 transformation,
which is supposedly the transformation giving the highest weight to low flows and was identified as the transformation with the
most number 1 ranks for a high number of intervals in Fig. 4, only shows the best average rank for the very first interval, and

then quickly shows a much worse average rank. This is in accordance with Fig. 5, where we clearly see that this transformation

11
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shows very bad ranks quite often, indicating that it only fits a few time steps. This might indicate that the —2 transformation
gives a high weight to errors over a limited number of time steps with the lowest streamflows.

Regarding the middle range of streamflows, a couple of transformations show the best average rank, such as the —1, log
and —0.5 transformations, but also progressively as streamflows get higher, the 0.2, Qinv@Q and boxcox transformations.
Interestingly, this indicates that while being quite average most of the time, as highlighted in Fig. 5, these transformations still
have better average ranks than transformations with more occurrences of rank 1. Finally, regarding high flows, the 2, 1, QlogQ

and 0.5 transformations take the lead, quite logically.
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Figure 6. Average rank for each transformation. Example for the Fecht River at Wintzenheim, over the calibration period (1985-1995), for

the GR4J model calibrated with NSE. A smoothing window (10-value moving average) is applied to improve legibility.

4.2 Analysis of the impact of transformations for the 325 catchments
4.2.1 Analysis of the calibration period

While some trends could be identified in the analysis of a single catchment in the previous section, the results are impacted
by a rather high level of noise for successive intervals. To circumvent this issue, and to generalize the results, we perform a
similar analysis over 325 catchments. This analysis is shown in Fig. 7 with the GR4J model calibrated with the NSE objective
function. Results are presented for the calibration period. In this figure, the best simulation is identified for each catchment
and for each interval according to the methodology presented in Fig. 3f. Then, for each interval, the simulation with the most
number 1 ranks is labelled as the best. A clear pattern appears: The 2 transformation is the best for high flows, and the 1
transformation is the best for slightly lower flows. Regarding low flows, the best transformation for the most extreme flows is
the —2 transformation, followed by the —1 and —0.5 transformations. This result confirms that the goal of transformations,

which is to distort the streamflow time series, is easily reached when used for calibration. The only surprise is that just 5 out of

12
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the 11 transformations are identified as the best for at least one interval. However, the present analysis is binary and could lead

to missing a more precise diagnosis.
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Figure 7. Identification of the simulation with the most rank 1 for the 325 catchments and for 200 intervals ordered by increasing observed
streamflows. To provide this analysis, the output of Fig. 3f is used, and for each interval, the number of number 1 ranks is cumulated over
the 325 catchments to identify the simulation with the most number 1 ranks. The GR4J model is used and is calibrated with NSE. Results

are shown for the calibration period.

To further detail the behaviour of all transformations, similar to the previous figure and using the same set-up (the GR4J
model calibrated with NSE, analysed over the calibration period for the 325 catchments), we present in Fig. 8 the frequency
of occurrence for each rank of all transformations for each interval over the 325 catchments. This figure shows that, although
transformations 2 and —2 have the most number 1 ranks in Fig. 7 for the highest and lowest streamflows, they appear to be the
transformations that show the lowest ranks over the largest range of streamflows. This indicates that despite being the most fit
for purpose transformation for their respective target (high and low flows, respectively), they should not be used for studies of
streamflows outside of these ranges. This figure also shows that no other transformation displays a satisfactory behaviour for
the whole range of streamflows. It seems that some transformations are almost never the worst performing transformation, but
also rarely the best one (e.g. boxcoz, 0.2, QlogQ, log).

In order to better understand the behaviours of the different transformations, we show in Fig. 9 the interval-averaged rank
of all transformations. The best average rank most of the time is between 4 and 5, except for high flows where it can reach 3.5
(the best being 1). We see that no transformation is always the best, even though some show a rather high interval-averaged
rank throughout most of the intervals. Regarding the worst transformations, they show an interval-averaged rank around 8 to
9 out of 11; however, transformation 2 is clearly the worst transformation for low flows and —2 the worst one for high flows.
Some trends can be observed. First, several transformations take the lead for low flows: the —2 transformation shows the best
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